

# TREM Advanced Battery Support Device

Dillon Acker-James · Bradly Odell · Bahar Asghari · Jacob Buckley · Teresa Algarra Ulierte

# System Flow Chart Heater

#### Custom PCB

Battery

Efficient heater control Optional USB interface



## **Battery Box**

- Holds a battery we made for testing purposes
- Allows system-level calculation of gravimetric energy density
- Future tests with flammable batteries
- Compatible with a wide range of metal-air battery chemistries

### Enclosure

- Protects PCB from battery cell heat
- Light-weight
- Acts as airflow conduit
- Stackable

#### Fans

- Airflow to fuel reaction
- Low power consumption

#### Heater

- Can reach 110°C
- Ceramic element with Aluminum shell



Advanced types of batteries, that will allow electric-powered flights, require rigorous management systems adapted to their unique needs. We have created a system that provides airflow to the battery, gives it a physical housing, measures its current and voltage, and keeps the temperature stable in order for these batteries to be viably used and evaluated.





# Molten Salt Metal Air Batteries

- Requires 80-140°C and constant airflow to fuel the reaction
- High gravimetric energy density when compared to Li ion

190 Wh/kg 260 Wh/kg 11,100 Wh/kg 12,800 Wh/kg **AA Battery** Lithium-ion Lithium-air Jet Fuel (Metal-air)

| / | Criteria                | Accomplished? |
|---|-------------------------|---------------|
|   | Lightweight             |               |
|   | Cost-effective          |               |
|   | Constant Airflow        |               |
|   | Stable High Temperature |               |
|   | Accurate Measurements   |               |



