An arthroscopy or "keyhole surgery" is a minimally invasive surgical procedure that enables a surgeon to examine and treat a joint by inserting an arthroscope, a pencil-sized instrument equipped with a miniature camera. Worldwide, over 2 million arthroscopy videos are recorded annually. Our goal is to lessen the workload of the surgeons by assisting their task of video summarization/annotation of arthroscopic video feeds.

ArthroScout is a tool classification software that utilizes image processing and machine learning methods (specifically convolutional neural networks or CNNs) to detect and classify the types of tools used in the arthroscopic surgery.

Dataset
- 3 data sets: 360,000 training, 6,000 validation, and 1,200 testing images
- 5 image augmentations: brightness, contrast, jpeg compression, motion blur, and color transfer

Classes from left to right: Heat Wand, Basket Biter, Suture (top)
Probes, Shaver, and No Tool (bottom)

CNN Architecture

24-Convolutional Layer Network Architecture:
- Batch normalization after each convolutional layer
- Average pooling at every 3 convolutional layers
- Xavier Initialization
- 1.97M trainable parameters
- Residual blocks

Test Accuracy

<table>
<thead>
<tr>
<th>Class</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basket Biter</td>
<td>0.780</td>
</tr>
<tr>
<td>Heat Wand</td>
<td>0.810</td>
</tr>
<tr>
<td>Probe</td>
<td>0.940</td>
</tr>
<tr>
<td>Shaver</td>
<td>0.755</td>
</tr>
<tr>
<td>Suture</td>
<td>0.875</td>
</tr>
<tr>
<td>No Tool</td>
<td>0.955</td>
</tr>
</tbody>
</table>

Average Accuracy: 0.853

Timing Analysis:
- 29.73 frames per second
- Near Real-Time