Ostracods are tiny crustaceans that create luminous courtship displays. WALL-E is a submersible low-light camera that can be deployed to analyze these patterns using computer vision techniques.

Background

Ostracods are tiny crustaceans that create luminous courtship displays. WALL-E is a submersible low-light camera that can be deployed to analyze these patterns using computer vision techniques.

Overview

WALL-E is a two-part project: the hardware setup to effectively capture footage, and the computer vision pipeline (shown below) to extract 3D points from ostracod footage.

Key Components

- **Teensy 3.6 Development Board**: Microcontroller used to communicate with external modules
- **PAM-7Q-0 U-Blox GPS Module**: GPS to initialize timestamp on videos and gather location data on deployments.
- **Watec WAT-910HX/RC 570TVL Camera**: Low-light cameras that capture ostracod footage

Frame Synchronization Results

Fixing the offset between frames on left and right feed

Stereo Rectification Results

Transforming the footage to fix fisheye distortion and level out the two feeds

Pulse Matching Results

Identifying light pulses in the left and right feed that correspond to the same ostracod

3D Mapping Results

Creating 3D models of ostracod pulses in time

Final Product

- **Cameras and External Hardware**
- **Printed Circuit Board with Soldered Components**

Acknowledgements:

Special thanks to Professor Yogananda Isukapalli, Professor Todd Oakley, Caio Motta, Celeste Bean, Trinity Locker-Cameron, Nicholai Hensley