As technology advances, so does society’s ability to provide tools for people with physical disabilities. TiresiaScope’s objective is to help the blind by creating a headset that uses sounds to assist in navigating their surroundings.

Overview
- Functions as a proximity sensor for the blind
- Detects nearby objects with ranging sensors, detects nearby faces with a camera
- Relays information to user through sound: musical tones indicate object location and distance, alert tones notify of nearby people

Hardware / Key Components
- **PYNQ by Xilinx**
 - ARM processor supports Python
 - Microblaze for hardware control
- **LV-MaxSonar-EZ1**
 - Ultrasonic ranging via UART
 - Range: 160mm to 6.45m
- **Simblee™ IoT 3D ToF Sensor**
 - Optical ranging via I²C
 - Range: 100 mm to 2 meters
- **Audio Codec WM8731**
 - Stereo audio via SPI
- **OpenMV M7 Camera**
 - On-board ARM processor
 - 640x480 8-bit grayscale, 30 FPS
 - 320x240 RGB565 at 30 FPS

How Sound is Generated
- Sound appears to come from direction of object
- Frequency gets higher as objects get closer
- Each of the five directions have five range bins
- Plays a particular note that corresponds to each direction and bin
- The ultrasonic and optical sensors work in tandem; if one of a pair fails, the other can be used instead

Acknowledgements: Thank you to professor Yogananda Isukapalli, Celeste Bean, and Caio Motta