Cloud Control

Fall Quarter Design Review

Team

Development Team

- Andrew Thompson
 - Project Lead
- Reed Taylor
 - PCB Design
- Brent Morada
 - Wireless Communications
- Anna Lee
 - Audio Processing
- Jair Santiago Carranza
 - Amplifier/Speaker System

Team Sponsor

- Phil Tokumaru
 - AeroVironment Project Advisor

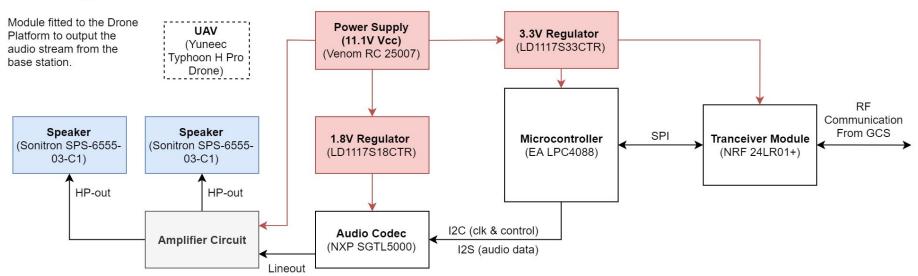
Project Vision, Applications

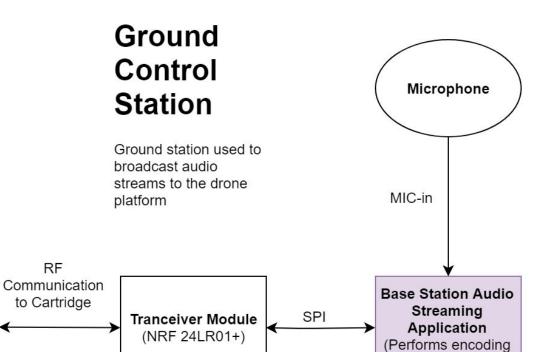
- Crowd control system using a drone equipped with a speaker
- Relay important messages to a target audience without being physically present
- Stretch goal: two-way communication

System Architecture

- Project Consists of two main components:
 - Ground control system
 - Drone with receiver module

Ground Control System

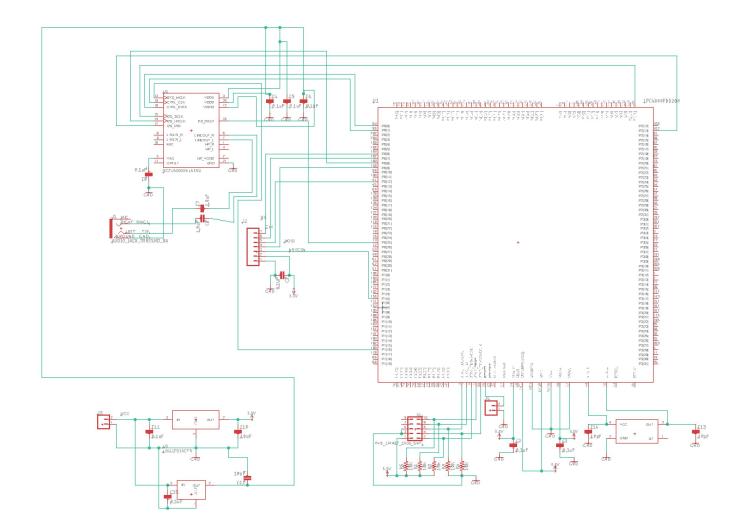

- Application on desktop or mobile client
- Records the user via a microphone
- Transmits the digital audio samples to the drone receiver over NRF24 wireless module

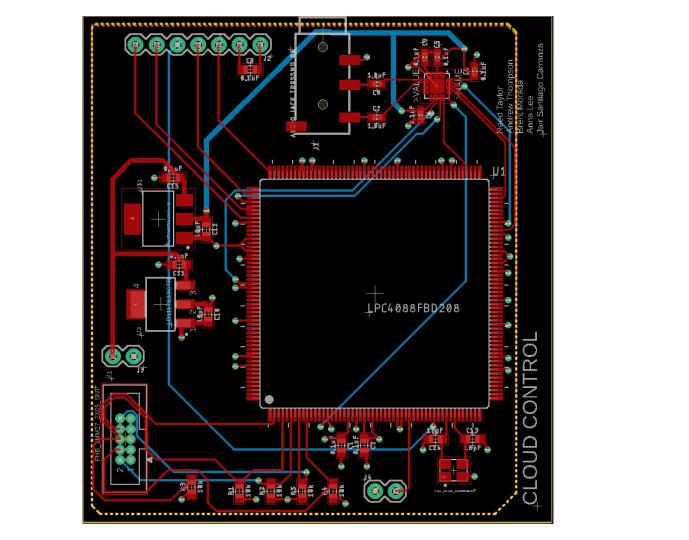

Drone Receiver Module

- Drone with mounted PCB and speaker system
- Flies 5-10 feet over target audience
- Receives digital audio samples from client, converts to analog, and outputs to speakers

Block Diagram

Audio Cartridge




as necessary)

RF

PCB Schematic

PCB Layout

Bill of Materials

LPC4088 Microcontroller	\$14
SGTL5000 Audio Codec	\$4
3.3V and 1.8V Voltage Regulators	\$1
Main Crystal	\$2
Headers, Adaptors, Capacitors, and Resistors	\$6
Sonitron Speakers	\$50
Amplifier Components	\$30
Venom Power Supply and Charger	\$134
Yuneec Typhoon H Pro Hexacopter Drone	\$900
TOTAL COST	\$1,141

Drone Choice

Yuneec Typhoon H Pro

- Can carry ~ 4lbs
- Relative operating loudness around Phantom 4
- Enough space to fit PCB,
 battery and piezoelectric
 speaker

Audio Streaming

- Successful audio streaming from end host (desktop) to Raspberry Pi using portaudio library
- Next goal is to port this code to the LPC4088 and alter the packetization to work with the NRF wireless module
- May run into issues with installing/compiling portaudio library on LPC4088

Wireless Communication (NRF24)

- Demonstrated NRF24 Communication between a Raspberry Pi and an Arduino Uno
- Starting port of the NRF24 library to LPC4088 for use between our board and our GCS
- Like the audio streaming, a primary concern will be effectively replicating the NRF24 libraries functionality

Audio Processing (SGTL5000 Codec)

- Successfully sent raw/uncompressed audio files (.wav) over I2S from an SD card on an arduino board to the headphone-out on the audio codec with dB gain
- Starting to port interfacing code over to NXPXpresso to interface the codec with the LPC4088
- May run into trouble porting SPI interfacing over to I2C (our original plan) and/or replicating libraries

Speaker and Amplifier System

- Venom Fly power supply will power the drone's components and speaker system while in flight.
- o SPS-6555-03 piezo speakers have been decided on.
- PAA-STEPUPBTL-01 could not be acquired in the US. We were able to find the design but must be implement it using different components.
- The parts for this amplifier have been decided on and will be verified by Brandon for prototyping on a breadboard.

Moving Forward

- Finalize Layout and submit to PCB manufacturer
- Port NRF communications library to LPC4088
- Port audio codec driver to LPC4088
- Modify our C audio streaming program to work under LPC4088 memory constraints
- Finish amplifier construction and test with PCB and speakers
- Create housing for components to attach to drone

Thanks to:

- Yogananda Isukapalli, Capstone Instructor
- Brandon Pon, TA
- Carrie Segal, TA
- Phil Tokumaru, AeroVironment Project Advisor
- AeroVironment, Inc, Project Sponsor

Q & A