Watchdog

Ryan Lorica | Jiacheng Liu | Jingzhe Chen | Leo Mei | Anzhe Ye

Initial Problem Specification

[intentionally blank]

Initial Problem Specification

In short: verify an astronaut's fidelity to standard operating procedure.

Proposed Solution

- A combination of three approaches:
- 1. Computer Vision
- 2. Sensor-embedded tools; IoT
- 3. Formalization of procedure writing

Computer Vision

- Real-time neural network-based object detection and localization
- Analyze the spatial relationships between objects to deduce semantics
- Static image analysis for deducing quality of astronaut-taken photographs

Sensor-Embedded Tools

- Active NFC glove, coupled with passive NFC tools, to reliably identify current tool in use
- IMU in glove to detect macroscopic hand motion, e.g. swinging a hammer
- Bluetooth beacons for user localization

Procedure Formalization

 Context-free grammar specifically for expressing procedures in a way easily mapped to sense data
 Internally represent procedures with precedence graphs, rather

than lists, to only capture strictly necessary ordinal relationships

<Mission> ::= <Task>+

<Task> ::= <Record Set> | <Image Set> | <Translate>

<Record Set> ::= <Record>+ <Record> ::= <Quantify> | <Qualify> | <Sample> <Quantify> ::= <Verbalize> | <Write> <Qualify> ::= <Verbalize> | <Write> <Sample> ::= <Search> <Identify and Mark> <Collect Candidates> <Collect Candidates> ::= [<Sterilization>] <Collect>+ <Collect> ::= <Isolate Sample> <Image Set> <Bag Sample> <Record Set>

<Image Set> ::= <Image>+ <Image> ::= <Picture> | <Video> <Picture> ::= [<*Place Guide*>] <*Take Picture>* <Video> ::= [<*Place Guide*>] <*Take Video*>

<Translate> ::= (<Move> [<Record Set>] [<Image Set>])+

Product Development Team

- Ryan Lorica: Lead, Computer Vision
- Jingzhen Chen: UI, IoT Algorithm Design
- Anzhe Ye: UI, IoT Algorithm Design
- Jiacheng Liu: PCB, Sensor Testing and Interfacing
- Leo Mei: PCB, Sensor Testing and Interfacing

* All members will cooperate for sensor fusion

High Level Block Diagram

Processor

Nvidia Jetson TX2

- ARMv8 (64-bit) Multiprocessor CPU Complex
- 256 core Nvidia Pascal GPU
- Clock speed
 CPU Up to 2 GHz
 GPU Up to 1.3 GHz
- Power Requirement: 5.5V 19.6V
- Peripheral Interfaces: I2C, UART, HDMI, USB
- Connectivity: Bluetooth Version 4.1

Sensors

Adafruit PN532 NFC

- Detect current using tool
- Embed NFC chip in glove, tags in tools
- Range of transmission: 10 cm
- Interface: UART

GeeekPi 5 inch LCD Touch Screen

- Display tasks and remind errors
- Resolution: 800 x 480 pixels
- Power requirement: 5V via Micro-USB
- Interface: HDMI

Sensors

Bluetooth Unit

- On-board Bluetooth Version 4.1
- Receive signal from a bluetooth beacon
 - Approach a site
- Lose signal from the bluetooth beacon
 - Leave the site

Bluetooth Beacon

- Localization
- Embed in marker
- One-way transmission
- Range of transmission: 1 m (expected)

Sensors

• Adafruit 9-dot BNO055 IMU Breakout

- Communicates via I2C
- Memory-mapped addressing to specify sensor, which allows for reading specific data
- Sensors used:
 - Accelerometer
 - $\pm 2/\pm 4/\pm 6/\pm 8/\pm 16 g$ ranges.
 - Accuracy: ± 60 mg
 - Data rate: 100Hz
 - Gyroscope
 - $\pm 245/\pm 500/\pm 2000$ degree per second ranges.
 - Accuracy: $\pm 10/\pm 15/\pm 75$
 - Data rate: 100Hz
- Successfully tested on TX2

Schematic

PCB

Bill of Materials

Part Label	Manufacturer	Manufacturer	Part Number	Unit Price	Total U	nits	Total P	rice
Bluetooth beacon	Radius Networks	B00JJ4P864		\$14		1		\$14
IMU	Adafruit	BN0055		\$35		1		\$35
TX2	NVIDIA	945-82771-000	00-000	\$569.99		1		\$569.99
NFC breakout	Adafruit	PN532		\$42.36		1		\$42.36
NFC tag	Adafruit	1		\$0.70		10		\$7.00
LCD display screen	Geeepi	EP-0081		\$54.99		1		\$54.99
Camera	Logitech	C920		\$49.99		1		\$49.99
					Total			\$763.33
RefDes	Description		Manuf Part #	Part Order #	Vendor	Unit Pric	e O	uantity
U1	IMU ACCEL/GYRO/MAG I	2C 28LGA	BNO055	828-1058-1-ND	Digi-Key		\$12.07	1
U2	NFC Chip PN532		PN5321A3HN/C106.55	771-PN5321A3HNC10	Mouser		\$10.86	1
U3	IC REG LINEAR 3.3V 150M	A SOT23-5	MIC5225-3.3YM5-TR	576-2980-1-ND	Digi-Key		\$0.40	1
SV1	Connector Header Through H	ole 9 position 0.050" (1.27mm)	GRPB091VWVN-RC	S9014E-09-ND	Digi-Key		\$0.72	1
SV1P	Connector Header Through H	ole 8 position 0.050" (1.27mm)	GRPB081VWVN-RC	S9014E-08-ND	Digi-Key		\$0.72	1
Y1	32.768KHz Crystal		ABS25-32.768KHZ-T	535-9166-1-ND	Digi-Key		\$0.63	1
Y1P	27.12MHz Crystal		ABM8-27.120MHZ-B4-T	535-13469-1-ND	Digi-Key		\$0.79	1
SW1P	SWITCH SLIDE DIP SPST 2	5MA 24V	1571983-3	450-2128-1-ND	Digi-Key		\$2.32	1
LED1P	LED RED DIFFUSED 0805 3	SMD	LS R976-NR-1	475-1278-1-ND	Digi-Key		\$0.38	1
TP1, TP2, TP3, TP4, TP5, TP6, TP7	Test Points		5016	36-5016CT-ND	Digi-Key		\$0.41	7
R6, R7	4.7KOhms Resistor		SG73G2ATTD4701D	660-SG73G2ATTD4701D	Mouser		\$0.23	2
R3, R4, R5, R7P, R9P, R10P	10KOhms Resistor		SG73G2ATTD1002D	660-SG73G2ATTD1002D	Mouser		\$0.23	6
R3P, R4P	1.50hms Resistor		CRM0805-JW-1R5ELF	652-CRM0805JW1R5ELF	Mouser		\$0.10	2
R2P	1.69KOhms Resistor		ERJ-U06F1691V	667-ERJ-U06F1691V	Mouser		\$0.16	1
R1P, R8P	1kOhms Resistor		SG73G2ATTD1001D	660-SG73G2ATTD1001D	Mouser		\$0.23	2
R5P, R6P	Not connected, no value, use	for replacement						2
C1, C2, C1P, C2P	22pF Capacitor		C0805C220F4HACAUTO	80-C0805C220F4HAUTO	Mouser		\$0.31	4
C3, C4, C11P, C14P, C16P, C17P, C23P, C24F	P 0.1uF Capacitor		C0805C104K3RAC7210	399-7365-2-ND	Digi-Key		\$0.03	8
C5P, C6P, C9P, C10P	Not connected, no value, use	for replacement						4
C7P, C8P	100pF Capacitor		C0805C101FCGACTU	80-C0805C101FCG	Digi-Key		\$0.48	2
C3P, C4P	220pF Capacitor		251R15S221JV4E	712-1398-1-ND	Digi-Key		\$0.51	2
C18P, C19P, C21P, C25P, C26P	10uF Capacitor		100R15X106KV4E	709-1228-1-ND	Digi-Key		\$0.75	5
C15P	1000pF Capacitor		08055A102GAT2A	478-3760-1-ND	Digi-Key		\$0.61	1
C12P, C13P	33pF Capacitor		CBR08C330J1GAC	80-CBR08C330J1GAC	Mouser		\$0.52	2
L1P, L2P	FERRITE BEAD 120 OHM (603 1LN	MMZ1608B121CTAH0	445-2164-1-ND	Digi-Key		\$0.10	2
L3P, L4P	560nH Inductor		PE-0805CM561JTT	553-1047-1-ND	Digi-Key		\$0.42	2
								Total Price
								\$44.34

Software Architecture - Overview

interface: I2C/UART

Software Architecture - Overview

Overall structure flow ...

Figure. Task Controller

Task Controller

Two main part:

- **Task Manager:** Controlling the overall tasking flowing.
- Procedure Manager:

Controlling the little procedures in each task.

When Task Manager switch to a new task, Procedure Manager activated;

Then Procedure Manager will send information to the **signal processing part**; (next slide)

When all procedures in Procedure Manager finished, user can go to the next task.

Software Architecture - Overview

interface: I2C/UART

Overall structure flow (continued) ...

Figure. Signal Receive

Signal Request and Receive Module

In Signal and Data Processing part, two modules used to process signal:

- Signal Request

Receiving information from Procedure Manager, (which signals needed to check ...) Then sending the signal request to the parts (IMU, Bluetooth, NFC, Camera)

Signal Receive

Receiving the processed signal response from **Data and** Signal Processor (next slide)

Then sending a completion signal to Procedure Manager, indicating the procedure completed

Software Architecture - Overview

interface: I2C/UART

Overall structure flow (continued) ...

Figure. Data and Signal Processor

Data and Signal Processor

Core Module in Data and Signal Processing part:

Including all the algorithms used to process the signal and data coming from PARTS: (such as Video Processing)

- When the processor received data feedback from the PARTS, it would analyze this data and decide whether they satisfied the procedure's request or not.
- If satisfied, it would send the signal response to Signal Receive Module;
- If not, it would send a signal request to Signal Request Module and do this procedure again; at the same time, it will alert users on LCD Screen.

UI Overview

Currer	i ^{pr_ui}
Task 1 Place the plastic marker or approach the site as near as possible (click for more details)	Completion Check : Working Status:
previous tas	k list next
Green "Done"	Gray "Waiting"
Yellow "In-progress"	Red "Warning"

- Synopsis of current task.
- Status of current task, using different color to indicate each kind of state.
- Three buttons at bottom to help user switch tasks.
- Hint of details.

UI Detail Windows

Current Task Detail: 1. Use the bluetooth and body camera to search the samples; 2. Use the body camera to identify those target samples; 3. Use the hammer to collect some samples. Back Completion Check : Working Status: Warning (click for details)

- Click left part of main interface to show the task detail.
- Click right part of main interface when working status is "Warning" to show the detail fo

- Use the bluetooth and body camera to search the samples;
 Use the body camera to identify those
- target samples; 3. Use the hammer to collect some samples.

UI overview

The End			Sorry tasks Pleas		orry, you have not accomplished all asks yet! lease review and finish all tasks:) OK	
				A	Congratulations	
Back	Review	Check			You have finished all tasks!	

• Press "Check" to end the whole procedure.

UI demo

Acknowledgements

Thank you to:

Dr. Yogananda Isukapalli

Carrie Segal

Brandon Pon

Dr. Jessica Marquez (NASA)

Dr. Richard Joyce (NASA)

Laritech

for all of your assistance with the project.

