Stress is physiologically and psychologically damaging.

StressNet is the first approach that uses deep learning to estimate physiological signals and detect stress [1].

Introduction

- Stress is physiologically and psychologically damaging.
- StressNet is the first approach that uses deep learning to estimate physiological signals and detect stress [1].

Motivation

- Traditional stress detection is invasive and lacks automation.
- Contactless health monitoring needed in the post-COVID world.
- Can be used as a precursor to a more formal diagnosis.

Data

- Cold Pressor Test (CPT): Inducing physical stress by submerging hand or feet in ice water.
- Original Data: BOSS Dataset recorded thermal videos, ECG and ICG signals of Subjects with feet in and out of ice water [2].
- New Data from UCSB IRB: approved experiments will not have ICG signal and do hand CPT.

Qualitative Results

- Traditional stress detection is invasive and lacks automation.
- Contactless health monitoring needed in the post-COVID world.
- Can be used as a precursor to a more formal diagnosis.

- StressNet can be used to facilitate wireless health monitoring.
- Thermal dataset is highly unique and offers various applicability in future research.

Limitations of the model:
- Noisy ECG signal due to poor electrode connection.
- Subjects move head out of field of view of camera.

Conclusion

- StressNet can be used to facilitate wireless health monitoring.
- Thermal dataset is highly unique and offers various applicability in future research.
- Limitations of the model:
 - Noisy ECG signal due to poor electrode connection.
 - Subjects move head out of field of view of camera.

Experimental Process

Recruitment

- Flyer
- Scan QR Code
- Interest/Exclusion Form Form

Data Sync

- List of available time slots sent to Subject
- View of more boxes checked in inclusion
- Some cannot participate in the study.

Method

Network Architecture

Test Accuracy

- Training Loss
- Plotting Loss

Potential Improvements

- Segment Anything Model (SAM): We are currently evaluating if SAM can be used to replace our spatial module [3]. SAM is a vision transformer that is better at learning long term dependencies than traditional models. However, we currently lack the necessary computing power to properly train the model.

Acknowledgement

This research is partially supported by the grant from NSF award #1664172 and International Foundation for Telemetring (IFT 2023). We thank Dr. Tom Bullock and the Department of Psychological & Brain Sciences for providing the equipment and guidance to make this study possible.

We thank Professor Andrew Kirillov, Professor Ilan Ben-Yaacov, Chris Cheney, and Ray Chang from the Department of Electrical and Computer Engineering for advising this project. We also thank Kelly Yan for designing the StressNet Logo.

Reference

