

Gaucho Autonomous Navy Environment Robot

Andrew Chhang

Background

Every year, the U.S navy spent about 55 billion dollars on ship maintenance, and sailors' life are endangered due to extremely dangerous environments on navy ships. With our robust design of caterpillar treads, multi-link arm, and optimized center of gravity, our robot can operate in a 1/3scale constant-shaking shipboard environment. This provides the most promising solution for the Navy to reduce the cost and save people's lives.

Challenge Overview

- 60° stairs
- Hatch door
- Dial
- Wooden platform Light switch
- 1.25 m wave equivalent rocking

Solution Overview

Challenges	Solutions	
Motion	Two motor systems propelling caterpillar treads	
Stability	 Optimized center of gravity for stabilization Strong magnetic wedges 	
Interact with obstacles	 Multi-link arm allows five degrees of freedom High-torque gripper to interact with obstacles 	
Control	 Wireless control with PS4 controller Raspberry Pi Inverse kinematics and Robotic Operating System (ROS) 2 Subroutines for semi-autonomous 	
Reliable	1. Wire harness	

Acknowledgements:

Fanthomwerx Lab, Geoff Tsai, Tyler Susko, Trevor Marks, Ilan Ben-Yaacov, John Jacobs, Danny Iland, Doug Bradley, Nick Willis, Destin Wong, Alan Jaeger, ASME, Tyler Hattori, Samuel Fei, Chris Cheney, UCSB Machine Shop, Austin Chen, Christopher Lew, Jack Carpino, João Hespanha, Kegan Woodhouse, Alex Ackerman

Liyuan Shen | Haotong Han | Xiangying Zuo | Clark Qiu | Tyler Solian Daniel Cheung | Chuyue Guan | Jacob Gardner | Huaishu Huang

Gaucho Autonomous Navy Environment Robot Liyuan Shen | Haotong Han | Xiangying Zuo | Clark Qiu | Tyler Solian |

Andrew Chhang | Daniel Cheung | Chuyue Guan | Jacob Gardner | Huaishu Huang

Design overview

The Gaucho Autonomous Navy Environment Robot (GANER) is a meticulously engineered robot powered by a robust mechanical design and an advanced electrical **system.** Its movement is realized by a two-motor system propelling caterpillar treads through a well-designed drivetrain. A wedge and magnet combination stabilize the robot on the stairs, while a multi-link arm with a flexible gripper interacts with a range of obstacles. Moreover, GANER is controlled wirelessly through a PS4 controller, with signals processed by a Raspberry Pi to control drivetrain and arm movements. Leveraging an inverse kinematics algorithm and the robotic operating system, GANER can interact with complex obstacles like dials and switches. This sturdy design enables operation in a 1/3 scale, constantly shaking shipboard environment, positioning GANER as a cost-effective, life-saving solution for the Navy.

Acknowledgements:

Fanthomwerx Lab, Geoff Tsai, Tyler Susko, Trevor Marks, Ilan Ben-Yaacov, John Jacobs, Danny Iland, Doug Bradley, Nick Willis, Destin Wong, Alan Jaeger, ASME, Tyler Hattori, Samuel Fei, Chris Cheney, UCSB Machine Shop, Austin Chen, Christopher Lew, Jack Carpino, João Hespanha, Kegan Woodhouse, Alex Ackerman

2	Arm Gripper	Powerful with 3.5 N·m torque.
3	Veg Cogs and Belts	Robust structures for torque transmis
4	Robot Chassis	Steel chassis with a low center of ma
5	Lithium Battery	12V battery powers the electrical sys
6	Drivetrain Motors	6.77 N·m motor that drives the robot
7	Caterpillar Tread	120-link tread system with high relial
8	Magnetic Wedges	Magnets and foams attached to 3D- printed wedges that improve stability
		Acrilia platform and 2 D printed app
9	Mount	protects the electronic components
9	Mount	protects the electronic components

