

PORTABLE OTK

TESTING MEETS PORTOBILITY

## Background

Northrop Grumman is a leading producer of deployable space systems such as deployable booms, solar arrays, and antennas. In order to accurately test the deployment of these systems, the zero-gravity environment of space needs to be simulated on Earth. This requires a testing platform that can provide a frictionless environment and be able to endure a range of high and low temperatures.

## **Overview**

- purpose off-loader test kit that utilizes air all was created to simulate deployment bearings sequences with negligible friction
- Surface finish and flatness of the floor are vital to air bearing performance
- An epoxy substrate is used as the air bearing floor to create a flat, self-leveling, and frictionless surface
- A modular sub-frame which holds the epoxy substrate is scalable and portable for large scale testing



## **Exploded View**

**Off-Loader Design Concept** 



Acknowledgements:



# Air Bearing Floor Off-Loader Test Kit Nickolas Powell | James Ho | Marc Viray | Jenny Pham | Chandler Bartz

## **Portable OTK**



**Off-Loader Test Kit** 

## **Key Design Features**



### **Actuating Pedestals**

- Provides rough leveling capability
- Supports weight of assembly





### Allows testing area to be scaled

Can disassemble for portability

Modular Subfloor Assembly

### **Epoxy Substrate**

- Creates smooth surface
- Enhances leveling properties of floor

Nathan Walker, Kirk Fields, Tyler Susko, Trevor Marks, Andy Weinberg, Sean Linley

## **Quantifying Friction Coefficient**



**Test Rig CAD Model** 

To determine if the cured epoxy substrate can float an air bearing, a friction test rig was designed and built. Using the inclined plane method, a micrometer gradually raised one end of the platform until the air bearing displaced.

| Epoxy            | Angle    | Fricti<br>Coeffic |
|------------------|----------|-------------------|
| Pro Marine Epoxy | 0.03528° | 0.000             |



**Air Bearing** 



## Conclusion

- Modular design allows for scalability and fast assembly
- Components were chosen to operate from -60°C to 60°C
- More epoxy substrates that can consistently produce a desirable flatness tolerance and surface finish must be tested in the future

## UC SANTA BARBARA College of Engineering



ient 06



