Powder bed fusion (PBF) is an additive manufacturing process used to 3D print metal parts. Thin layers of metal powder are spread across a flat build plate, where a laser melts them together into a desired shape. This process is repeated until a part is produced. The Lawrence Livermore National Laboratory carries two different machines that employ PBF: SLM and Concept Laser (CL).

The 2nd Generation Powder Spreading Machine (PSM) accurately replicates adaptations of the powder spreading processes of these two machines.

Overview

The 2nd Generation PSM:
- Replicates PBF in SLM and Concept Laser
- Has a controllable autonomous system with an easy-to-use interface controlling various powder spreading parameters
- Is easy to operate with minimal set-up and clean-up

Powder Spreading Processes

Concept Laser
1) Hopper chamber raises to expose powder stock
2) Build platform lowers
3) Blade sweeps across hopper chamber and build platform to create a fresh powder layer

SLM
1) Build plate lowers
2) Powder is deposited from above
3) Blade sweeps across the build plate
4) Process is repeated but in reverse direction

Design Overview

The Design Overview includes the following components:

- **Overhead Hopper**
 - Dispenses powder into SLM Blade System
 - 6 flutes, each with enough volume for a 10 µm layer of powder

- **SLM Blade System**
 - Deposits powder on either side of blade, depending on spread direction
 - Swappable SLM and Concept Laser blades

- **Belt Drive**
 - Sweeps blade across build plate
 - Speeds up to 1.5m/s

- **Elevator**
 - Raises and lowers build plates and powder chamber
 - 25mm of travel, 10 µm accuracy

Project Specifications

<table>
<thead>
<tr>
<th>System</th>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>The machine shall have 2 parameter sets which mimic the motions of the CL and SLM Machines</td>
<td>• Blade speed, dose rate, layer height</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Should be able to define number of layers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Manual positioning of stages and blade</td>
</tr>
<tr>
<td>Easy to use and clean</td>
<td>For a given test:</td>
<td>• Set up shall take no longer than 10 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disassembly shall take no longer than 10 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Powder clean up shall take no longer than 5 minutes</td>
</tr>
<tr>
<td>Spreading Performance</td>
<td>Machine shall spread powder in a unilateral method (Concept Laser)</td>
<td>• Blade shall remain perpendicular to build plate within .25 mm</td>
</tr>
<tr>
<td></td>
<td>Machine shall spread powder in a bilateral method (SLM)</td>
<td></td>
</tr>
<tr>
<td>Blade Drive</td>
<td>Linear Belt Drive System</td>
<td>• Spreading blade shall achieve speeds up to 300 mm/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spreading blade speed shall have capabilities to change speeds during travel with a defined ramp rate</td>
</tr>
<tr>
<td>Vertical Stages</td>
<td></td>
<td>• Accuracy: 10 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Uni-directional Repeatability: 10 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Minimum Step Size: 5 µm</td>
</tr>
</tbody>
</table>

Results:

- Inspection of lines of powder dispensed from the Overhead Hopper showed a uniform distribution of powder along the full length of a flute
- Quantitative comparison of the theoretical and actual volume of powder dispensed from the Overhead Hopper showed an average powder loss of 0.909g/flute
- Qualitative observation of powder layers after spreading revealed flat layers, free from distortions for both processes

Acknowledgements:

Stephen Laguette, Tyler Susko, Roger Green, Andy Weinberg, Trevor Marks, Thomas Pluskell, Matthew Roberts, Aaron Ruch, Otis Walton