Background

Super resolution is the process of scaling a photo beyond its original dimensions, e.g. turning a 320x256 photo into a 1024x768 photo. Super resolution has applications that range from enhancing old movies to exploring the far reaches of space via satellite photos. This poses a question: A 1024x768 photo has more information than a 320x256 one, so how can the extra data be synthesized?

Overview

IRSR is an machine learning framework that was designed specifically for upscaling infrared images and videos. It uses information obtained from consecutive frames in a video to super resolve each image or frame. Through a neural network training, the computer can learn a set of kernel weights to convolve with an input image, and a mapping can be determined that takes low resolution inputs and generates high resolution outputs. The goal of this project was to run the super resolution algorithm directly on a camera so a balance between computation time and image clarity was designed for.

FLIR Boson

Camera features:
- 12 core processor built for speed and with machine learning in mind
- Small thermal sensor (320x256) but can potentially run a super resolution algorithm in real time to produce an HD image

Acknowledgements:

We would like to thank our professor Ilan Ben-Yaacov, teaching assistant Ekta Prashnani, and advisor B.S. Manjunath. We would also like to thank Louis Tremblay and Jim Klingshirn from FLIR, as well as the creator of VSRnet Armin Kappeler.