Background
Cerebral Palsy (CP) is a common motor disability affecting 1 in every 312 kids in the U.S. In order to mitigate the effects and encourage muscle growth, it is essential for patients to receive physical therapy in their early development period. A large number of affected infants do not receive a sufficient volume of therapy due to cost and resource restrictions.

The objective of BabyJoy is to emulate techniques used at in-person therapy sessions on a device that can be used in the home by caretakers.

Overview
- Mimics ball therapy - a form of therapy that encourages core and trunk strength
- Meant to research effects of high volume therapy on mitigating effects of CP
- Low to the ground and fits through a doorway allowing in-home use

Components

Physical Structure
- Retrofitted Racing Simulator
- Motors placed underneath move platform using linkage system
- Smooth, therapeutic motion

Sensor Integration
- Load & sonar sensors to track weight and placement of infant
- Flexi sensors in button box to track infant’s interaction via # of taps
- Microphone sensor to detect frequency of infant crying

User Interface
- An app that runs on the attached tablet to control the BabyJoy through preset therapy routines, as well as collect and record session statistics

Acknowledgements:
Thank you to Ilan Ben-Yaacov, Tyler Susko, John Jacobs, Jane Harpster, Yoganda Isukapalli, Reza Abdoolee, Trevor Marks, Blake Diamond, Evan Blasband, and Erik Rosten.