Ripe-O-Meter a non-destructive ripeness measurement tool for avocados

Gregory Berberian | Michael Bik | Herman Li | Ginwoo Pak | Harrison Tan

Background

Current industry test methods for testing the ripeness of avocados include handstaging and a fruit pressure sensor (penetrometer). Hand staging is subjective to the user and therefore not quantitative. The penetrometer not only destroys the fruit, but only samples a fraction of it. The industry needs a quantitative, non-destructive, repeatable, reliable, and efficient method of testing the ripeness of avocados. The Ripe-O-meter is our solution.

Design Specifications

- → Reduce Operator Variability
 - The Ripe-O-Meter has a simple procedure for consistent results
- → Increase Throughput
- Average of <5s per avocado</p>
- → Compensate for Irregularities
 - Distributed force on bulbous end rather than at a point
- \rightarrow Easily Transportable
 - Lightweight and Portable, weighs 10 lbs and fits in 1 ft^3

APEEL SCIENCES[™]

CAPEELSTONE Ripe-O-Meter

The Ripe-O-Meter utilizes the difference in peak force between dropped avocados to determine their stage. Since firmer avocados exert a larger peak force, the stages between avocados are easily discernible.

Hardware / Key Components

Futek LCF300

Universal Pancake Load Cell \rightarrow 100 lb load capacity \rightarrow 150% load protection

FUTEK IAA100

- Analog Amplifier
- → 0 10V Output
- → 25kS/s Sample Rate

NI USB-6001

Data Acquisition Device

- \rightarrow 14 bits-analog resolution
- \rightarrow 20kS/s single channel sample speed

Special thanks to:

Greg Dahlen, Julie Dunson, Kirk Fields, Matthew Gaudioso, Roger Green, Trevor Marks, Stephen Laguette, Tyler Susko

